Как правильно выбрать коммутатор?

Вводная информация

Многие до сих пор не видят разницы между свичом и хабом. Понимая, что тема уже много раз обсуждалась, все же хотелось начать именно с нее.


Несколько лет назад хаб был основным сетевым устройством, которое использовалось для построения локальных сетей. Работа хаба сводится к работе обычного повторителя, который просто пересылает полученную информацию на все порты. Получается, что всем компьютерам сети пересылается эта информация, но принимает ее только один. Хабы очень быстро «забивали» всю локальную сеть ненужным трафиком. Для построения локальной сети с помощью хабов нужно было придерживаться внегласного правила «четырех хабов». Это правило гласит о том, что нельзя использовать более 4 хабов подряд в линии, т.к. при нарушении этого правила большая вероятность возникновения «пакетного шторма» (это когда огромное количество паразитных пакетов пересылаются по сети).


Как правильно выбрать коммутатор?

Для свитчей это правило уже не актуально, т.к. современные свитчи даже начального уровня в ходе работы формируют таблицу коммутации, набирая список MAC-адресов, и согласно нее осуществляют пересылку данных. Каждый свитч, после непродолжительного времени работы, «знает» на каком порту находится каждый компьютер в сети.


Далее жаргонное слово свитч будет заменено на коммутатор, дабы придать этой публикации более серьезный вид.


При первом включении, таблица коммутации пуста и коммутатор начинает работать в режиме обучения. В режиме обучения работа свича идентична работе хаба: коммутатор, получая поступающие на один порт данные, пересылает их на все остальные порты. В это время коммутатор производит анализ всех проходящих портов и в итоге составляет таблицу коммутации.

Особенности, на которые следует обратить внимание при выборе коммутатора



Чтобы правильно сделать выбор при покупке коммутатора, нужно понимать все обозначения, которые указываются производителем. Покупая даже самое дешевое устройство, можно заметить большой список поддерживаемых стандартов и функций. Каждый производитель сетевого оборудования старается указать в характеристиках как можно больше функций, чтобы тем самым выделить свой продукт среди конкурентов и повысить конечную стоимость.


Распространенные функции коммутаторов:



  • Количество портов. Общее количество портов, к которым можно подключить различные сетевые устройства.

    Количество портов лежит в диапазоне от 5 до 48.


  • Базовая скорость передачи данных. Это скорость, на которой работает каждый порт коммутатора. Обычно указывается несколько скоростей, к примеру, 10/100/1000 Мб/сек. Это говорит о том, что порт умеет работать на всех указанных скоростях. В большинстве случаев коммутатор поддерживает стандарт IEEE 802.3 Nway автоопределение скорости портов.

    При выборе коммутатора следует учитывать характер работы подключенных к нему пользователей.


  • Внутренняя пропускная способность. Этот параметр сам по себе не играет большого значения. Чтобы правильно выбрать коммутатор, на него следует обращать внимание только в паре с суммарной максимальной скоростью всех портов коммутатора (это значение можно посчитать самостоятельно, умножив количество портов на базовую скорость порта). Соотнося эти два значения можно оценить производительность коммутатора в моменты пиковой нагрузки, когда все подключенные пользователи максимально используют возможности сетевого подключения.
    К примеру, Вы используете 16-портовый коммутатор на скорости 100 Мб/сек, имеющий пропускную способность в 1Гб/сек. В моменты пиковой нагрузки 16 портов смогут передавать объем информации равный:
    16×100=1б00(Мб/сек)=1.6(Гб/сек)

    Полученное значение меньше пропускной способности самого коммутатора. Такой коммутатор подойдет в большинстве случаев небольшой организации, где на практике приведенную ситуацию можно встретить крайне редко, но не подойдет для организации, где передаются большие объемы информации.

    Для правильного выбора коммутатора следует учитывать, что в действительности внутренняя пропускная способность не всегда соответствует значению, которое заявлено производителем.


  • Автосогласование между режимами Full-duplex или Half-duplex. В режиме Full-duplex данные передаются в двух направлениях одновременно. При режиме Half-duplex данные могут передаваться только в одну сторону одновременно. Функция автосогласования между режимами позволяет избежать проблем с использованием разных режимов на разных устройствах.

  • Автоопределение типа кабеля MDI/MDI-X. Это функция автоматически определят по какому стандарту был «обжат» кабель витая пара, позволяя работать этим 2 стандартам в одной ЛВС.


  • Стандарт MDI:
    mdi


    Стандарт MDI-X:
    MDI-X

  • Наличие порта Uplink. Порт Uplink предназначен для каскадирования коммутаторов, т.е. объединение двух коммутаторов между собой. Для их соединения использовался перекрестный кабель (Crossover). Сейчас такие порты можно встретить только на старых коммутаторах или на специфическом оборудовании. Грубо говоря, в современных коммутаторах все порты работают как Uplink.

  • Стекирование. Под стекированием коммутаторов понимается объединение нескольких коммутаторов в одно логическое устройство. Стекирование целесообразно производить, когда в итоге требуется получить коммутатор с большим количеством портов (больше 48 портов). Различные производители коммутаторов используют свои фирменные технологии стекирования, к примеру, Cisco использует технологию стекирования StackWise (шина между коммутаторами 32 Гбит/сек) и StackWise Plus (шина между коммутаторами 64 Гбит/сек).

    При выборе коммутатора следует отдавать предпочтение устройствам поддерживающим стекирование, т.к. в будущем эта функция может оказаться полезной.


  • Возможность установки в стойку. Это означает, что такой коммутатор можно установить в стойку или в коммутационный шкаф. Наибольшее распространение получили 19 дюймовые шкафы и стойки, которые стали для современного сетевого оборудования неписанным стандартом.

    Большинство современных устройств имеют такую поддержку, поэтому при выборе коммутатора не стоит акцентировать на этом большого внимания.


  • Количество слотов расширения. Некоторые коммутаторы имеют несколько слотов расширения, позволяющие разместить дополнительные интерфейсы. В качестве дополнительных интерфейсов выступают гигабитные модули, использующие витую пару, и оптические интерфейсы, способные передавать данные по оптоволоконному кабелю.

  • Размер таблицы MAC-адресов. Это размер коммутационной таблицы, в которой соотносятся встречаемые MAC-адреса с определенным портом коммутатора. При нехватке места в коммутационной таблице происходит затирание долго не используемых MAC-адерсов. Если количество компьютеров в сети много больше размера таблицы, то происходит заметное снижение производительности коммутатора, т.к. при каждом новом MAC-адресе происходит поиск компьютера и внесение отметки в таблицу.

    При выборе коммутатора следует прикинуть примерное количество компьютеров и размер таблицы MAC-адресов коммутатора.


  • Flow Control (Управление потоком). Управление потоком IEEE 802.3x обеспечивает защиту от потерь пакетов при их передаче по сети. К примеру, коммутатор во время пиковых нагрузок, не справляясь с потоком данных, отсылает отправляющему устройству сигнал о переполнении буфера и приостанавливает получение данных. Отправляющее устройство, получая такой сигнал, останавливает передачу данных до тех пор, пока не последует положительного ответа от коммутатора о возобновлении процесса. Таким образом два устройства как бы «договариваются» между собой когда передавать данные, а когда нет.

    Так как эта функция присутствует почти во всех современных коммутаторах, то при выборе коммутатора на ней не следует акцентировать особого внимания.


  • Jumbo Frame. Наличие этой функции позволяет коммутатору работать с более большим размером пакета, чем это оговорено в стандарте Ethernet.

    После приема каждого пакета тратится некоторое время на его обработку. При использовании увеличенного размера пакета по технологии Jumbo Frame, можно существенно сэкономить на времени обработки пакета в сетях, где используются скорости передачи данных от 1 Гб/сек и выше. При меньшей скорости большого выигрыша ждать не стоит.


    Технология Jumbo Frame работает только между двумя устройствами, которые оба ее поддерживают.


    При подборе коммутатора на этой функции не стоит заострять внимание, т.к. она присутствует почти во всех устройствах.


  • Power over Ethernet (PoE). Эта технология передачи электрического тока для питания коммутатора по неиспользуемым проводам витой пары. Стандарт IEEE 802.af.

  • Встроенная грозозащита. Некоторые производители встраивают в свои коммутаторы технологию защиты от гроз. Такой коммутатор следует обязательно заземлить, иначе смысл этой дополнительной функции отпадает.


  • Какие коммутаторы бывают?

    Помимо того, что все существующие коммутаторы различаются количеством портов (5, 8, 16, 24 и 48 портов и т.д.) и скоростью передачи данных (100Мб/сек, 1Гб/сек и 10Гб/сек и т.д.), коммутаторы можно так же разделить на:



    1. Неуправляемые свичи – это простые автономные устройства, которые управляют передачей данных самостоятельно и не имеющие инструментов ручного управления. Некоторые модели неуправляемых свичей имеют встроенные инструменты мониторинга (например некоторые свичи Compex).

      Такие коммутаторы получили наибольшее распространение в «домашних» ЛВС и малых предприятиях, основным плюсом которых можно назвать низкую цену и автономную работу, без вмешательства человека.


      Минусами у неуправляемых коммутаторов является отсутствие инструментов управления и малая внутренняя производительность. Поэтому в больших сетях предприятий неуправляемые коммутаторы использовать не разумно, так как администрирование такой сети требует огромных человеческих усилий и накладывает ряд существенных ограничений.


    2. Управляемые свичи – это более продвинутые устройства, которые также работают в автоматическом режиме, но помимо этого имеют ручное управление. Ручное управление позволяет очень гибко настроить работу коммутатора и облегчить жизнь системного администратора.

      Основным минусом управляемых коммутаторов является цена, которая зависит от возможностей самого коммутатора и его производительности.



    Абсолютно все коммутаторы можно разделить по уровням. Чем выше уровень, тем сложней устройство, а значит и дороже. Уровень коммутатора определяется слоем на котором он работает по сетевой модели OSI.


    Для правильного выбора коммутатора Вам потребуется определиться на каком сетевом уровне необходимо администрировать ЛВС.


    Разделение коммутаторов по уровням:



    1. Коммутатор 1 уровня (Layer 1). Сюда относятся все устройства, которые работают на 1 уровне сетевой модели OSIфизическом уровне. К таким устройствам относятся повторители, хабы и другие устройства, которые не работают с данными вообще, а работают с сигналами. Эти устройства передают информацию, словно льют воду. Если есть вода, то переливают ее дальше, нет воды, то ждут. Такие устройства уже давно не производят и найти их довольно сложно.

    2. Коммутатор 2 уровня (Layer 2). Сюда относятся все устройства, которые работают на 2 уровне сетевой модели OSIканальном уровне. К таким устройствам можно отнести все неуправляемые коммутаторы и часть управляемых.

      Коммутаторы 2 уровня работают с данными ни как с непрерывным потоком информации (коммутаторы 1 уровня), а как с отдельными порциями информации – кадрами (frame или жарг. фреймами). Умеют анализировать получаемые кадры и работать с MAC-адресами устройств отправителей и получателей кадра. Такие коммутаторы «не понимают» IP-адреса компьютеров, для них все устройства имеют названия в виде MAC-адресов.


      Коммутаторы 2 уровня составляют коммутационные таблицы, в которых соотносят MAC-адреса встречающихся сетевых устройств с конкретными портами коммутатора.


      Коммутаторы 2 уровня поддерживают протоколы:



      • IEEE 802.1p или приоритизация (Priority tags).
        Стандарт IEEE 802.1p позволяет отсортировать весь трафик на пакеты по степени важности, выставив приоритеты. Более приоритетные пакеты, имеющие более высокую важность, будут отправляться в первую очередь.

        Например, весьма логично дать высокий приоритет пакетам VoIP и низкий — пакетам FTP.



      • IEEE 802.1q или виртуальные сети (VLAN). Протокол IEEE 802.1q позволяет внутри одной физической сети построить несколько отдельных логических сетей (виртуальных сетей).

        Разделить существующую ЛВС на виртуальные сети можно:



        • присвоив уникальный идентификатор VLAN каждому порту коммутатора, при этом порты коммутаторов с одним номером будут находиться в одной виртуальной сети;

        • присвоив каждому MAC-адресу, внесенному в коммутационную таблицу, уникальный номер VLAN;

        • присвоив уникальный идентификатор VLAN после прохождения аутентификации, при использовании протокола 802.1x.



      • IEEE 802.1d Spanning Tree Protocol (STP), в задачи которого входит приведение всей ЛВС к древовидной структуре.

        Данный протокол, по большому счету, используется для повышения отказоустойчивости всей ЛВС. Структура ЛВС изначально строится с избыточным количеством линий связи. «Лишние» линии связи, во избежании закольцовывания, данный протокол временно отключает, приводя всю структуру ЛВС к древовидному виду. При обрыве действующей линии связи протокол самостоятельно ищет новый кратчайший путь, восстанавливая тем самым работу ЛВС в целом.


        Как правильно выбрать коммутатор?

      • IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) более усовершенствованный стандарт IEEE 802.1d, который обладает более высокой устойчивостью и меньшим временем «восстановления» линии связи.

      • IEEE 802.1s Multiple Spanning Tree Protocol (MSTP) является наиболее современным протоколом, учитывающим все достоинства и недостатки предыдущих решений.

      • IEEE 802.3ad Link aggregation for parallel links или агрегирование каналов используется для повышения пропускной способности канала. Фактически это объединение нескольких портов в один высокоскоростной порт с суммарной скоростью объединенных портов. Максимальная скорость определена стандартом IEEE 802.3ad и составляет 8 Гбит/сек.


    3. Коммутатор 3 уровня (Layer 3). Сюда относятся все устройства, которые работают на 3 уровне сетевой модели OSIсетевом уровне. К таким устройствам относятся все маршрутизаторы, часть управляемых коммутаторов, а так же все устройства, которые умеют работать с различными сетевыми протоколами: IPv4, IPv6, IPX, IPsec и т.д. Коммутаторы 3 уровня целесообразнее отнести уже не к разряду коммутаторов, а к разряду маршрутизаторов, так как эти устройства уже полноценно могут маршрутизировать, проходящий трафик, между разными сетями. Коммутаторы 3 уровня полностью поддерживают все функции и стандарты коммутаторов 2 уровня. С сетевыми устройствами могут работать по IP-адресам. Коммутатор 3 уровня поддерживает установку различных соединений: pptp, pppoe, vpn и т.д.

    4. Коммутатор 4 уровня (Layer 4). Сюда относятся все устройства, которые работают на 4 уровне сетевой модели OSIтранспортном уровне. К таким устройствам относятся более продвинутые маршрутизаторы, которые умеют работать уже с приложениями. Коммутаторы 4 уровня используют информацию, которая содержится в заголовках пакетов и относится к уровню 3 и 4 стека протоколов, такую как IP-адреса источника и приемника, биты SYN/FIN, отмечающие начало и конец прикладных сеансов, а также номера портов TCP/UDP для идентификации принадлежности трафика к различным приложениям. На основании этой информации, коммутаторы уровня 4 могут принимать интеллектуальные решения о перенаправлении трафика того или иного сеанса.


    Чтобы правильно подобрать коммутатор Вам нужно представлять всю топологию будущей сети, рассчитать примерное количество пользователей, выбрать скорость передачи данных для каждого участка сети и уже под конкретную задачу начинать подбирать оборудование.

    Управление коммутаторами

    Интеллектуальными коммутаторами можно управлять различными способами:



    • через SSH-доступ. Подключение к управляемому коммутатору осуществляется по защищенному протоколу SSH, применяя различные клиенты (putty, gSTP и т.д.). Настройка происходит через командную строку коммутатора.

    • через Telnet-доступ к консольному порту коммутатора. Подключение к управляемому коммутатору осуществляется по протоколу Telnet. В результате мы получаем доступ к командной строке коммутатора. Применение такого доступа оправданно только при первоначальной настройки, т. к. Telnet является незащищенным каналом передачи данных.

    • через Web-интерфейс. Настройка производится через WEB-браузер. В большинстве случаев настройка через Web-интерфейс не дает воспользоваться всеми функциями сетевого оборудования, которые доступны в полном объеме только в режиме командной строки.

    • через протокол SNMP. SNMP – это протокол простого управления сетями.

      Администратор сети может контролировать и настраивать сразу несколько сетевых устройств со своего компьютера. Благодаря унификации и стандартизации этого протокола появляется возможность централизованно проверять и настраивать все основные компоненты сети.



    Чтобы правильно выбрать управляемый коммутатор стоит обратить внимание на устройства, которые имеют SSH-доступ и протокол SNMP. Несомненно Web-интерфейс облегчает первоначальную настройку коммутатора, но практически всегда имеет меньшее количество функций, чем командная строка, поэтому его наличие приветствуется, но не является обязательным.

    Зарубин Иван Эксперт по Linux и Windows

    Парашютист со стажем. Много читаю и слушаю подкасты. Люблю посиделки у костра, песни под гитару и приближающиеся дедлайны. Люблю путешествовать.

    Вдохновлен

    Комментарии (20)

    • Ничто не служит вечно, так что замена будет в любом случае. Так что выбирать раз и навсегда не получается, а выбор в любом случае происходит между возможностями, надёжностью и ценой.

    • Mut@NT

      sashakrasnoyarsk: Ничто не служит вечно, так что замена будет в любом случае. Так что выбирать раз и навсегда не получается, а выбор в любом случае происходит между возможностями, надёжностью и ценой.

      Про вечность никто и не говорит.

      Просто в российских реалиях развертывание ЛВС, скажем на крупном предприятии, идет в несколько этапов, т.к. денег на все никто не дает. Поэтому продумывание на перед (сроком на 5 лет) просто необходимо. Да и если коммутатор, скажем, Cisco 2960 будет установлен, то через 5 лет его менять точно ни придется.

      Такое оборудование меняется в 2 случаях: в случае поломки и в случае нехватки мощности/функционала/защиты.

    • alfastrah.spb

      что бы я без вас делал…..

    • alex_lsd

      спасибо статья очень полезная

    • Zerger

      Cisco’ки тоже железяки, не нужно их боготворить, касяков хватает, а на работе похерилась без возможности ремонта ровно через 4 года, денег в своё время за эту хрень отдали порядочно, выгодней в средних сетях обходиться не управляемыми комутаторами и серваком-маршрутизатором (хорошие сетевухи выгодней нем циску брать и система гибче).

    • VeresPro

      Спасибо, очень помогла статья).

    • Misa

      Отличная статья. Спасибо.

    • Vasya144

      Спасибо

    • Alexander

      Хорошая статья, примеров бы по больше в каких случаях используется тот или иной комутатор. Они (примеры) есть но не везде.

    • mazutka

      Спасибо, статья очень помогла!

    • Спасибо, хорошая статья, рассказано все на простом и понятном языке.

    • Дмитрий

      Спасибо! Очень понятно и доступно все написано

    • Douglas

      Отличная статья, мало кто может так одекватно сформулировать,, Уважуха автору…

    • добрый день, у меня вопрос по зеркалированию, в характеристиках некоторых коммутаторов пишется “поддерживается” а в других “поддерживается один к восьми” например. Мне нже нужно чтобы можно было все порты зеркалировать на один, подходит ли мне первый вариант (поддерживается) или нужно уточнять у производителей ?

    • Иван Алексеевич

      Большое спасибо. Стал вопрос о расширении организации и вы единственные кто реально дал ответ на такой простой ответ, но сложный для тех кто не сталкивался с такими простыми вещами

    • Алекс

      Огромное спасибо автору! Написана куча “умных” книг, толщиной в 5 сантиметров, в которых на 7 странице перестаешь что-либо понимать вообще. Здесь же автор написал 10 абзацев, в которых объяснил если не всё, то почти всё предельно ясно, просто и грамотно. Вот кому надо книги писать и деньги на этом зарабатывать, а не всяким проходимцам, которые только копипастят западные стандарты, худо-бедно-криво их переведя.

    • Константин

      Сейчас передо мной тоже стоит задача выбора коммутатора. Спасибо огромное за статью, действительно очень четко и ясно! С настройками у меня очень часто бывали проблемы в работе, не хватает знаний, как я предполагаю.

    • Aleksey

      Спасибо за статью. Нашел не мало полезного в статье.

    • Кирилл

      Большое спасибо за прекрасную статью, все разложено от и до, сейчас редко найдешь информмацию такого качества.

    • молодцы, мне задали выучить тематику а у вас даже для полного новичка супер